jueves, 6 de noviembre de 2008

SIGNIFICADO DE ALGORITMOS

Algoritmo:

En
matemáticas, ciencias de la computación, y disciplinas relacionadas, un algoritmo (del latín, dixit algorithmus y éste a su vez del matemático persa al-Jwarizmi) es una lista bien definida, ordenada y finita de operaciones que permite hallar la solución a un problema. Dado un estado inicial y una entrada, a través de pasos sucesivos y bien definidos se llega a un estado final, obteniendo una solución. Los algoritmos son objeto de estudio de la algoritmia.
En la vida cotidiana se emplean algoritmos en multitud de ocasiones para resolver diversos problemas. Algunos ejemplos se encuentran en los instructivos (manuales de usuario), los cuales muestran algoritmos para usar el aparato en cuestión o inclusive en las instrucciones que recibe un trabajador por parte de su patrón. También existen ejemplos de índole matemático, como el algoritmo de la
división para calcular el cociente de dos números, el algoritmo de Euclides para calcular el máximo común divisor de dos enteros positivos, o el método de Gauss para resolver un Sistema lineal de ecuaciones.
Cuando escribimos un programa de computadora, generalmente estamos llevando a cabo un método que se ha inventado para resolver algún problema previamente. Este método es a menudo independiente de la computadora y es probable que sea igualmente apropiado para muchas tipos de computadora y muchos lenguajes de computadora. Es el método, en el programa de computación, el que nosotros debemos estudiar para aprender cómo se está tratando de resolver el problema. El término algoritmo se usa en la informática para describir un método problema-solución conveniente para la aplicación en un programa de computadora. Los algoritmos son los materiales de informática, son los objetos centrales de estudio para muchos, si no la mayoría, de las áreas de campo.
Introducción:
[La importancia de un algoritmo radica en mostrar la manera de llevar a cabo procesos y resolver mecánicamente problemas matemáticos o de otro tipo. Al igual que las funciones matemáticas, los algoritmos reciben una entrada y la transforman en una salida, comportándose como una caja negra. Sin embargo, no toda caja negra que convierta una entrada en una salida se puede considerar un algoritmo: para que un algoritmo pueda ser considerado como tal, debe ser una secuencia ordenada, finita y definida (formalización de su comportamiento) de instrucciones. De este modo se puede seguir y predecir el comportamiento del algoritmo para cualquier entrada posible (salvo algoritmos probabilistas, que tiene usualmente una salida distinta), a partir del seguimiento de esa secuencia de instrucciones, que como es ordenada y definida, no da lugar a ambigüedades y puede seguirse su traza.
El concepto de algoritmo, aunque similar y obviamente relacionado, no debe confundirse con el concepto de
programa. Mientras el primero es la especificación de un conjunto de pasos (operaciones, instrucciones, órdenes,...) orientados a la resolución de un problema (método), el segundo es ese conjunto de operaciones especificadas en un determinado lenguaje de programación y para un computador concreto, susceptible de ser ejecutado (o compilado o interpretado). Un algoritmo, estrictamente hablando, no puede ejecutarse hasta que se implementa, ya sea en un lenguaje de programación, en un circuito eléctrico, en un aparato mecánico, usando papel y lápiz, o en algún otro modelo de computación.
La mayoría de los algoritmos involucran métodos de organizar los datos que intervienen en el cómputo. Estos objetos creados son llamados, de esta manera la estructura de los datos, y también son objetos centrales del estudio en la informática. De esta forma, los algoritmos y estructuras de los datos van siempre de la mano. Los algoritmos simples pueden dar lugar a una estructura de datos complicada y, recíprocamente, los algoritmos complicados pueden usar estructuras de los datos simples.
Características de los algoritmos:
El científico de computación Donald Knuth ofreció una lista de cinco propiedades, que son ampliamente aceptadas como requisitos para un algoritmo:
  1. Carácter finito: "Un algoritmo siempre debe terminar después de un número finito de pasos".
  2. Precisión:"Cada paso de un algoritmo debe estar precisamente definido; las operaciones a llevar a cabo deben ser especificadas de manera rigurosa y no ambigua para cada caso".
  3. Entrada: "Un algoritmo tiene cero o más entradas: cantidades que le son dadas antes de que el algoritmo comience, o dinámicamente mientras el algoritmo corre. Estas entradas son tomadas de conjuntos específicos de objetos".
  4. Salida: "Un algoritmo tiene una o más salidas: cantidades que tienen una relación específica con las entradas".
  5. Eficacia: "También se espera que un algoritmo sea eficaz, en el sentido de que todas las operaciones a realizar en un algoritmo deben ser suficientemente básicas como para que en principio puedan ser hechas de manera exacta y en un tiempo finito por un hombre usando lápiz y papel".

Knuth admite que, aunque su descripción pueda ser intuitivamente clara, carece de rigor formal, puesto que no está exactamente claro qué significa "precisamente definido", "de manera rigurosa y no ambigua", o "suficientemente básicas", y así sucesivamente..
A partir del carácter finito y de la salida se deduce que ante una misma situación inicial (o valores de entrada) un algoritmo debe proporcionar siempre el mismo resultado (o salida), con excepción de los
algoritmos probabilistas

Algoritmos y funciones :

Artículo principal: Teoría de la computabilidad
Formalmente, un algoritmo calcula a una función. Como cualquier conjunto finito es numerable, y cualquier conjunto no numerable se puede expresar en términos del conjunto de los números naturales (infinito, pero numerable, de hecho no existe otro conjunto más grande que sea también numerable), en esencia, todo algoritmo calcula a funciones definidas en los numeros naturales. En este punto, una función está parcial o totalmente definida. Una función es parcial cuando hay números naturales que no pertenecen a su dominio (es decir, hay números naturales sobre los que no está definida la función), y una función es total en caso contrario.
Si una función es parcial, el algoritmo que lo calcula solo devolverá un resultado (es decir gasta un tiempo de cálculo finito) para los valores en los que la función está definida, no devolviendo resultado (el tiempo de cálculo es infinito) para el resto de valores. Si un algoritmo que calcula a una función parcial devolviera un resultado para los valores no definidos de la función, entonces no calcularía a esa función sino a otra. Del mismo modo, un algoritmo que calcula a una función total siempre devuelve un resultado para todo valor, y que al igual que las funciones parciales, éste debe coincidir exactamente con el valor que devuelve la función a la que calcula; y reiterativamente, en caso contrario, no calcularía a esa función sino a otra. Así, todo algoritmo (secuencia de pasos finita, ordenada y definida) calcula a una función definida sobre los números naturales, sea cuál sea ésta su naturaleza.
Toda función para la cual exista un algoritmo que lo calcule se denomina función computable (parcialmente computable o totalmente computable depende del grado de definición de la función en cuestión), pero existen funciones que no pueden ser calculadas como la
función de Ackermann; a este último tipo de funciones se las denomina funciones no computables.

Medios de expresión de un algoritmo:

Los algoritmos pueden ser expresados de muchas maneras, incluyendo al lenguaje natural, pseudocódigo, diagramas de flujo y lenguajes de programación entre otros. Las descripciones en lenguaje natural tienden a ser ambiguas y extensas. El usar pseudocódigo y diagramas de flujo evita muchas ambigüedades del lenguaje natural. Dichas expresiones son formas más estructuradas para representar algoritmos; no obstante, se mantienen independientes de un lenguaje de programación específico.

La descripción de un algoritmo usualmente se hace en tres niveles:

  1. Descripción de alto nivel: Se establece el problema, se selecciona un modelo matemático y se explica el algoritmo de manera verbal, posiblemente con ilustraciones y omitiendo detalles.
  2. Descripción formal: Se usa pseudocódigo para describir la secuencia de pasos que encuentran la solución.
  3. Implementación: Se muestra el algoritmo expresado en un lenguaje de programación específico o algún objeto capaz de llevar a cabo instrucciones.
    También es posible incluir un
    teorema que demuestre que el algoritmo es correcto, un análisis de complejidad o ambos.

Diagrama de flujo :

Diagrama de flujo que expresa un algoritmo para calcular la raíz cuadrada de un número x
Artículo principal:
Diagrama de flujo
Los diagramas de flujo son descripciones gráficas de algoritmos; usan símbolos conectados con flechas para indicar la secuencia de instrucciones y están regidos por ISO.
Los diagramas de flujo son usados para representar algoritmos pequeños, ya que abarcan mucho espacio y su construcción es laboriosa. Por su facilidad de lectura son usados como introducción a los algoritmos, descripción de un lenguaje y descripción de procesos a personas ajenas a la computación.Diagrama de flujo

Pseudocódigo :
Pseudocódigo es la descripción de un algoritmo que asemeja a un lenguaje de programación pero con algunas convenciones del lenguaje natural. Tiene varias ventajas con respecto a los diagramas de flujo, entre las que se destaca el poco espacio que se requiere para representar instrucciones complejas. El pseudocódigo no está regido por ningún estándar. pseudo viene de falso y por ende es un codigo al que aunque es entendible no se aplica al proceso que debe realizar la maquina.

Máquina de Turing :
Artículo principal:
Máquina de Turing
La máquina de Turing es un modelo matemático, diseñado por Alan Turing, que formaliza el concepto de algoritmo. A este modelo se le refiere comúnmente como la "descripción de más bajo nivel" por el hecho de que no utiliza ninguna expresión coloquial.

Implementación : Muchos algoritmos son ideados para implementarse en un programa. Sin embargo, los algoritmos pueden ser implementados en otros medios, como una red neuronal, un circuito eléctrico o un aparato mecánico. Algunos algoritmos inclusive se diseñan especialmente para implementarse usando lápiz y papel. El algoritmo de multiplicación tradicional, el algoritmo de Euclides, la criba de Eratóstenes y muchas formas de resolver la raíz cuadrada son sólo algunos ejemplos.

Análisis de algoritmos : Como medida de la eficiencia de un algoritmo, se suelen estudiar los recursos (memoria y tiempo) que consume el algoritmo. El análisis de algoritmos se ha desarrollado para obtener valores que de alguna forma indiquen (o especifiquen) la evolución del gasto de tiempo y memoria en función del tamaño de los valores de entrada.
El análisis y estudio de los algoritmos es una disciplina de las ciencias de la computación y, en la mayoría de los casos, su estudio es completamente abstracto sin usar ningún tipo de
lenguaje de programación ni cualquier otra implementación; por eso, en ese sentido, comparte las características de las disciplinas matemáticas. Así, el análisis de los algoritmos se centra en los principios básicos del algoritmo, no en los de la implementación particular. Una forma de plasmar (o algunas veces "codificar") un algoritmo es escribirlo en pseudocódigo o utilizar un lenguaje muy simple tal como Léxico, cuyos códigos pueden estar en el idioma del programador.

Algunos escritores restringen la definición de algoritmo a procedimientos que deben acabar en algún momento, mientras que otros consideran procedimientos que podrían ejecutarse eternamente sin pararse, suponiendo el caso en el que existiera algún dispositivo físico que fuera capaz de funcionar eternamente. En este último caso, la finalización con éxito del algoritmo no se podría definir como la terminación de éste con una salida satisfactoria, sino que el éxito estaría definido en función de las secuencias de salidas dadas durante un periodo de vida de la ejecución del algoritmo. Por ejemplo, un algoritmo que verifica que hay más ceros que unos en una secuencia binaria infinita debe ejecutarse siempre para que pueda devolver un valor útil. Si se implementa correctamente, el valor devuelto por el algoritmo será válido, hasta que evalúe el siguiente dígito binario. De esta forma, mientras evalúa la siguiente secuencia podrán leerse dos tipos de señales: una señal positiva (en el caso de que el número de ceros sea mayor que el de unos) y una negativa en caso contrario. Finalmente, la salida de este algoritmo se define como la devolución de valores exclusivamente positivos si hay más ceros que unos en la secuencia y, en cualquier otro caso, devolverá una mezcla de señales positivas y negativas.


2 comentarios:

Simone dijo...

La formula matematica del algoritmo es muy interesante!! Como todas le Sciences.Palabra de un Italiano.Ciao.

Luise Castro dijo...

Oe jennyfer, me podrias ahcer el favor de pasar el algortimo de los cubos de nicomaco en C#, es que lo necesito urgente, y la forma como tienes alli fromado el pseudocodigo no es muy clara que se diga.... te lo agradesco gracias... ;);